●论文专著
1.H. Peng, W.H. Guo, S.Y. Feng, Y.J. Shen. A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application. Applied Energy, 322, 119548, 2022.
2.H. Peng,W.J.Yan,Y.F.Wang,S.Y.Feng.Discharging process and thermal evaluation in the thermal energy storage system with fractal tree-like fins.International Journal of Heat and Mass Transfer, 183, 122073, 2022.
3.H. Peng,W.H.Guo,M.L.Li,S.Y.Feng. Melting behavior and heat transfer performance of gallium for spacecraft thermal energy storage application.Energy, 228, 120575, 2021.
4.H. Peng,M.L.Li,F.F. Hu,S.Y.Feng. Performance analysis of absorber tube in parabolic trough solar collector inserted with semi-annular and fin shape metal foam hybrid structure.Case Studies in Thermal Engineering,26,101112,2021.
5.H. Peng,M.L.Li,X.G. Liang. Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam.Energy, 211, 119046, 2020.
6.H. Peng,W.H.Guo,M.L.Li. Thermal-hydraulic and thermodynamic performances of liquid metal based nanofluid in parabolic trough solar receiver tube.Energy, 192, 116564, 2020.
7.H. Peng, L.N. Lin, G.L. Ding. Influence of fluorinated self-assembled monolayer on wetting dynamics during evaporation of refrigerant-oil mixture on metal surface. International Journal of Refrigeration, 79, 76-88, 2017.
8.H. Peng, L.N. Lin, G.L. Ding. Experimental research on wetting behavior of refrigerant–oil mixture on micro/nanostructured surface.International Journal of Refrigeration, 62, 207-221, 2016.
9.H. Peng, L.N. Lin, G.L. Ding. Influences of primary particle parameters and surfactant on aggregation behavior of nanoparticles in nanorefrigerant. Energy, 89, 410-420, 2015.
10.H. Peng, G.L. Ding, H.T. Hu, W.T. Jiang. Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles. International Journal of Heat and Mass Transfer, 54, 1839-1850, 2011.
11.H. Peng, G.L. Ding, H.T. Hu. Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part I: Experimental measurement. International Journal of Refrigeration, 34, 1823-1832, 2011.
12.H. Peng, G.L. Ding, H.T. Hu. Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part II: Model development and validation. International Journal of Refrigeration, 34, 1833-1845, 2011.
13.H. Peng, G.L. Ding, H.T. Hu. Migration of carbon nanotubes from liquid-phase to vapor-phase in the refrigerant-based nanofluid pool boiling. Nanoscale Research Letters, 6, 219, 2011.
14.H. Peng, G.L. Ding, H.T. Hu. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Experimental Thermal and Fluid Science, 35, 960-970, 2011.
15.H. Peng, G.L. Ding, H.T. Hu, W.T. Jiang. Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant-oil mixture. International Journal of Thermal Sciences, 49, 2428-2438, 2010.
16.H. Peng, G.L. Ding, H.T. Hu, W.T. Jiang, D.W. Zhuang, K.J. Wang. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles. International Journal of Refrigeration, 33, 347-358, 2010.
17.H. Peng, G.L. Ding, W.T. Jiang, H.T. Hu, Y.F. Gao. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, 32, 1259-1270, 2009.
18.H. Peng, G.L. Ding, W.T. Jiang, H.T. Hu, Y.F. Gao. Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, 32, 1756-1764, 2009.