发表论文
[1]Xiaokang Wang, Laurence T. Yang, Xia Xie*, Jirong Jin, and M. Jamal Deen, “A Cloud-Edge Computing Framework for Cyber-Physical-Social Services,” IEEE Communications Magazine, vol.55, no.11, pp. 80-85, 2017.(ESI热点论文/高被引论文,中科院一区)
[2]Xiaokang Wang, Laurence T. Yang, Liwei Kuang, Xingang Liu*, Qingxia Zhang and M. Jamal Deen,“A Tensor-based Big Data-Driven Routing Recommendation Approach for Heterogeneous Networks,” IEEE Network Magazine, vol. 33, no. 1, pp. 64-69, 2019.(ESI热点论文/高被引论文,中科院一区)
[3]XiaokangWang, Laurence T. Yang*, Yihao Wang, Lei Ren, M. Jamal Deen, “ADTT: A Highly-Efficient Distributed Tensor-Train Decomposition Method for IIoT Big Data,” IEEE Transactions on Industrial Informatics,vol.17, no. 3, pp. 1573-1582, 2020.(ESI热点论文/高被引论文,中科院一区,IEEE Trans.)
[4]XiaokangWang, Laurence T. Yang*, Liwen Song, Huihui Wang, Lei Ren, and M. Jamal Deen, “A Tensor-based Multi-Attributes Visual Feature Recognition for Industrial Intelligence,” IEEE Transactions onIndustrial Informatics, vol. 17, no. 3, pp. 2231-2241, 2020.(ESI高被引论文,中科院一区,IEEE Trans.)
[5]Xiaokang Wang, Laurence T. Yang*, Lei Ren, Yihao Wang, and M. Jamal Deen, “A Tensor-based Computing and Optimization Model for Intelligent Edge Services,” IEEE Network,vol.36, no.1, pp. 40-44, 2022.(中科院一区)
[6]XiaokangWang, Lei Ren*, Ruixue Yuan, Laurence T. Yang, and M. Jamal Deen, “QTT-DLSTM: A Cloud-Edge-Aided Distributed LSTM for IIoT Big Data,” IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2022.3140238, 2022.(中科院一区,IEEE Trans.)
[7]Xiaokang Wang, Laurence T. Yang*, Hongguo Li, Man Lin, Jan-jun Han, B.O. Apduhan, “NQA: A Nested Anti-collision Algorithm for RFID Systems” ACM Transactions on Embedded Computing Systems, vol.18, no. 4, DOI:10.1145/3330139, 2019.(ACM Trans.)
[8]Xiaokang Wang, Laurence T. Yang*, Xingyu Chen, and Jian-Jun Han, “A Tensor Computation and Optimization Model for Cyber-Physical-Social Big Data,” IEEE Transactions on Sustainable Computing,vol.4, no.4, pp.326-339, 2019.(封面论文,IEEE Trans.)
[9]Xiaokang Wang, Laurence T. Yang*, Jun Feng, Xingyu Chen, and M. Jamal Deen, “A Tensor-based Big Service Framework for Enhanced Living Environments,” IEEE Cloud Computing, vol. 3, no. 6, pp.36-43, 2016.
[10]Xiaokang Wang, Laurence T. Yang*, Xingyu Chen, Lizhe Wang, Rajiv Ranjan, Xiaodao Chen, and M. Jamal Deen, “A Multi-order Distributed HOSVD with its Incremental Computing for Big Service in Cyber-Physical-Social Systems,” IEEE Transactions on Big Data, vol.6, no. 4, pp.666-678, 2020.(IEEE Trans.)
[11]Xiaokang Wang, Laurence T. Yang*, Huazhong Liu, and M. Jamal Deen, “A Big Data-as-a-Service Framework: State-of-the-Art and Perspectives,” IEEE Transactions on Big Data, vol. 4, no. 3, pp. 325-340, 2018.(IEEE Trans.)
[12]Xiaokang Wang, Wei Wang*, Laurence T. Yang, Siwei Liao, Dexiang Yin,and M. Jamal Deen, “A Distributed HOSVD Method with its Incremental Computation for Big Data in Cyber-Physical-Social Systems,” IEEE Transactions on Computational Social Systems, vol.5, no. 2, pp. 481-492, 2018.(IEEE Trans.)
[13]Xiaokang Wang, Laurence T. Yang*, Xingyu Chen, M. Jamal Deen, and Jirong Jin, “Improved Multi-order Distributed HOSVD with its Incremental Computing for Smart City Services,” IEEE Transactions on Sustainable Computing, vol.6, no.3, pp.456-468, 2021.(ESI高被引论文, IEEE TSCUS2021最佳论文奖)
[14]Xiaokang Wang, Laurence T. Yang*, Yihao Wang, Xingang Liu, Qingxia Zhang, and M. Jamal Deen, “A Distributed Tensor-Train Decomposition Method for Cyber-Physical-Social Services,” ACM Transactions on Cyber Physical Systems, vol.3, no.4, DOI:10.1145/3323926, 2019.(ACM Trans.)
[15] Lianyong Qi,Xiaokang Wang*, Xiaolong Xu, Wanchun Dou, Shancang Li, “Privacy-Aware Cross-Platform Service Recommendation based on Enhanced Locality-Sensitive Hashing”, IEEE Transactions on Network Science and Engineering, vol.8, no.2, pp.1145-1153, 2020.(ESI高被引论文,IEEE Trans.)
[16] Yan Kang, Xuekun Yang, Bin Pu,Xiaokang Wang*, Haining Wang, Yulong Xu, Puming Wang, “HWOA: An Intelligent Hybrid Whale Optimization Algorithm for Multi-objective Task Selection Strategy in Edge Cloud Computing System”, World Wide Web,DOI:10.1007/s11280-022-01082-7, 2022 (CCF B)
[17] Wanchun Dou, Bowen Liu, Chuangwei Lin,Xiaokang Wang*, Xutong Jiang, Lianyong Qi,“Architecture of Virtual Edge Data Center with Intelligent Metadata Service of a Geo-distributed File System”,Journal of Systems Architecture,DOI:10.1016/j.sysarc.2022.102545, 2022 (CCF B)
[18] Xiaokang Wang, Laurence T. Yang*, Enyuan Cao, Luyang Guo, and M. Jamal Deen “T Tensor-based t-SVD-LSTM Remaining Useful Life Prediction Model for Industrial Intelligence,” IEEE Transactions on Industrial Informatics, DOI:10.1109/TII.2022.3220854, 2022.(中科院一区,IEEE Trans.)
Paper of co-author:
[1]Lei Ren*, Xuejun Cheng,Xiaokang Wang, Jin Cui, Lin Zhang, “Multi-Scale Dense Gate Recurrent Unit Networks for Bearing Remaining Useful Life Prediction,” Future Generation Computer Systems, vol. 94, pp. 601-609, 2019.(ESI高被引论文)
[2] Lei Ren*, Zihao Meng,Xiaokang Wang, Renquan Lu, and Laurence T. Yang, “A Wide-Deep-Sequence Model based Quality Prediction Method in Industrial Process Analysis,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 9, pp. 3721-3731, Sep. 2020.(ESI高被引论文,中科院一区,IEEE Trans.)
[3]Lei Ren*, Zihao Meng,Xiaokang Wang, Lin Zhang and Laurence T. Yang, “A Data-driven Approach of Product Quality Prediction for Complex Production Systems,” IEEE Transactions on Industrial Informatics, vol.17, no.9, pp.6457-6465, 2020.(ESI高被引论文,中科院一区,IEEE Trans.)
[4] Lei Ren*, Jiabao Dong,Xiaokang Wang, Zihao Meng, Li Zhao, M. Jamal Deen, “A Data-driven Auto-CNN-LSTM Prediction Model for Lithium-ion Battery Remaining Useful Life,” IEEE Transactions on Industrial Informatics,vol.17, no.5, pp.3478-3487, May 2021.(ESI高被引论文,中科院一区,IEEE Trans.)
[5] Liwei Kuang, Laurence T. Yang*,Xiaokang Wang, Puming Wang, Yaliang Zhao, “A Tensor-based Big Data Model for QoS Improvement in Software Defined Networks,” IEEE Network, vol. 30, no. 1, pp. 30-35, 2016.(中科院一区)
[6] LeiRen*, Zidi Jia,Xiaokang Wang, Jiabao Dong, Wei Wang,“A T2-Tensor-aided Multi-Scale Transformer for Remaining Useful Life Prediction in IIoT,”IEEE Transactions on Industrial Informatics, DOI:10.1109/TII.2022.3166790, 2022.(中科院一区,IEEE Trans.)
[7] Lei Ren, Yuxin Liu,Xiaokang Wang,Jinhu Lv, M. Jamal Deen, “Cloud-Edge based Lightweight Temporal Convolutional Networks for Remaining Useful Life Prediction in IIoT,” IEEE Internet of Things Journal, vol.8, no.16, pp.12578-12587, 2020.
[8] Yinxue Yi, Zufan Zhang, Laurence T. Yang, Xianjun Deng, Lingzhi Yi, andXiaokang Wang, “Social Interaction and Information Diffusion in Social Internet of Things: Dynamics, Cloud-Edge, Traceability,” IEEE Internet of Things Journal, vol.8, no.4, pp.2177-2192, 2020.
[9]Bin Hu, Kehua Guo,Xiaokang Wang, Jian Zhang, Di Zhou, “RRL-GAT: Graph Attention Network-driven Multi-Label Image Robust Representation Learning”, IEEE Internet of Things Journal, DOI: 10.1109/JIOT.2021.3089180, 2021.
[10]Xia Xie, Xiaodong Yang,Xiaokang Wang, Hai Jin, Duoqiang Wang, Xijiang Ke, “BFSI-B: An Improved K-Hop Graph Reachability Queries for Cyber-Physical Systems,” Information Fusion, vol.38, pp. 35-42, 2017.
[11]Jin Cui, Lei Ren,Xiaokang Wang,Lin Zhang, “Pairwise Comparison Learning based Bearing Health Quantitative Modeling and its Application in Service Life Prediction,” Future Generation Computer Systems, vol. 97, pp.578-586, 2019.
[12]Meng Zhao, Hao Wang, Ying Han,Xiaokang Wang, Hong-Ning Dai, Xuguo Sun, Jin Zhang and Marius Pedersen,“SEENS: Nuclei Segmentation in Pap Smear Images with Selective Edge Enhancement,” Future Generation Computer Systems, vol.114, pp.185-194, 2021.
[13] Lei Ren, Yuanjun Laili, Xiang Li, andXiaokang Wang,“Coding-based Large-Scale Task Assignment for Industrial Edge Intelligence”, IEEE Transactions on Network Science and Engineering, vol.7, no.4, pp. 2286-2297, 2019.
[14]Yuanjun Laili, Xiang Li, Yongjing Wang, Lei Ren, andXiaokang Wang,“Robotic Disassembly Sequence Planning with Backup Actions”, IEEE Transactions on Automation Science and Engineering, DOI: 10.1109/TASE.2021.3072663, 2021.
[15]Yinxue Yi, Zufan Zhang, Laurence T. Yang,Xiaokang Wang,and Chenquan Gan, “Edge-aided Control Dynamics for Information Diffusion in Social Internet of Things,” Neurocomputing, DOI: 10.1016/j.neucom.2021.03.140, 2021.
[16]Hu Zhu, Tao Xie, Yusheng Guan, Lizhen Deng, andXiaokang Wang, “Hypergraph Matching with an Entropy Barrier Function,” IEEE ACCESS, vol.7, no. 1, pp.16638-16647, 2019.
[17]Huazhong Liu, Jihong Ding, Laurence T. Yang, Yimu Guo,Xiaokang Wang, and Anyuan Deng, “Multi-dimensional Correlative Recommendation and Adaptive Clustering via Incremental Tensor Decomposition for Sustainable Smart Education”, IEEE Transactions on Sustainable Computing, DOI: 10.1109/TSUSC.2019.2954456, 2019.
[18]Lei Ren, Yingjie Li,Xiaokang Wang,Jin Cui, and Lin Zhang, “An ABGE-aided Manufacturing Knowledge Graph Construction Approach for Heterogeneous IIoT Data Integration,” International Journal of Production Research, DOI:10.1080/00207543.2022.2042416, 2022
[19]Wenwen Gong, Huiping Wu,Xiaokang Wang, Xuyun Zhang, Yawei Wang, Yifei Chen, and M. R. Khosravi, “Diversified and Compatible Web APIs Recommendation in IoT”, Digital Communications and Networks, arXiv preprint arXiv:2107.10538, 2021.
[20]Lizhen Deng, Yuxin Cao, Zhongyang Wang,Xiaokang Wang,and Yu Wang, “A Multidimensional Tensor Low RankMethod for Magnetic Resonance Image Denoising,” IEEE Transactions on Computational Biology and Bioinformatics, DOI: 10.1109/TCBB.2023.3272893, 2023.
[21]Yuanjun Laili, Zelin Chen, Lei Ren,Xiaokang Wang, and M. Jamal Deen, “Custom Grasping: A Region-based Robotic Grasping Detection Method in Industrial Cyber-Physical Systems”, IEEE Transactions on Automation Science and Engineering, DOI: T-ASE-2020-1038, 2021.